Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(3): e11129, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38516569

RESUMO

During ontogeny, the increase in body size forces species to make trade-offs between their food requirements, the conditions necessary for growth and reproduction as well as the avoidance of predators. Ontogenetic changes are leading species to seek out habitats and food resources that meet their needs. To this end, ontogenetic changes in nocturnal habitat (vertical use of the water column) and in the type of food resources (based on stable isotopes of nitrogen) were investigated in 12 species of deep pelagic fish from the Bay of Biscay in the Northeast Atlantic. Our results revealed the existence of major differences in the ontogenetic strategies employed by deep pelagic fishes. Some species showed ontogenetic changes in both vertical habitat use and food resources (e.g. Jewel lanternfish (Lampanyctus crocodilus) and Atlantic soft pout (Melanostigma atlanticum)). In contrast, other species showed no ontogenetic change (e.g. Koefoed's searsid (Searsia koefoedi) and Lancet fish (Notoscopelus kroyeri)). Some species only changed food resources (e.g. Spotted lanternfish (Myctophum punctatum), Spotted barracudina (Arctozenus risso) and Stout sawpalate (Serrivomer beanii)), while others seemed to be influenced more by depth than by trophic features (e.g. Bluntsnout smooth-head (Xenodermichthys copei) and Olfer's Hatchetfish (Argyropelecus olfersii)). These results suggest that to meet their increasing energy requirements during ontogeny, some species have adopted a strategy of shifting their food resources (larger prey or prey with a higher trophic level), while others seemed to maintain their food resources but are most likely increasing the quantity of prey ingested. As fish species can have different functional roles during their development within ecosystems, characterising ontogenetic changes in mesopelagic fish species is a crucial step to be considered in future research aimed at understanding and modelling the complexity of deep-pelagic food webs.

2.
Nat Commun ; 15(1): 2126, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459105

RESUMO

Ocean warming and acidification, decreases in dissolved oxygen concentrations, and changes in primary production are causing an unprecedented global redistribution of marine life. The identification of underlying ecological processes underpinning marine species turnover, particularly the prevalence of increases of warm-water species or declines of cold-water species, has been recently debated in the context of ocean warming. Here, we track changes in the mean thermal affinity of marine communities across European seas by calculating the Community Temperature Index for 65 biodiversity time series collected over four decades and containing 1,817 species from different communities (zooplankton, coastal benthos, pelagic and demersal invertebrates and fish). We show that most communities and sites have clearly responded to ongoing ocean warming via abundance increases of warm-water species (tropicalization, 54%) and decreases of cold-water species (deborealization, 18%). Tropicalization dominated Atlantic sites compared to semi-enclosed basins such as the Mediterranean and Baltic Seas, probably due to physical barrier constraints to connectivity and species colonization. Semi-enclosed basins appeared to be particularly vulnerable to ocean warming, experiencing the fastest rates of warming and biodiversity loss through deborealization.


Assuntos
Biodiversidade , Invertebrados , Animais , Oceanos e Mares , Peixes , Temperatura , Água , Ecossistema , Aquecimento Global
3.
Nat Commun ; 13(1): 4774, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050297

RESUMO

Setting appropriate conservation strategies in a multi-threat world is a challenging goal, especially because of natural complexity and budget limitations that prevent effective management of all ecosystems. Safeguarding the most threatened ecosystems requires accurate and integrative quantification of their vulnerability and their functioning, particularly the potential loss of species trait diversity which imperils their functioning. However, the magnitude of threats and associated biological responses both have high uncertainties. Additionally, a major difficulty is the recurrent lack of reference conditions for a fair and operational measurement of vulnerability. Here, we present a functional vulnerability framework that incorporates uncertainty and reference conditions into a generalizable tool. Through in silico simulations of disturbances, our framework allows us to quantify the vulnerability of communities to a wide range of threats. We demonstrate the relevance and operationality of our framework, and its global, scalable and quantitative comparability, through three case studies on marine fishes and mammals. We show that functional vulnerability has marked geographic and temporal patterns. We underline contrasting contributions of species richness and functional redundancy to the level of vulnerability among case studies, indicating that our integrative assessment can also identify the drivers of vulnerability in a world where uncertainty is omnipresent.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Peixes/fisiologia , Mamíferos
4.
Commun Biol ; 5(1): 250, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318453

RESUMO

Habitat engineers make strong and far-reaching imprints on ecosystem processes. In intertidal mudflats, the dominant primary producer, microphytobenthos (MPB), often forms high biomass patches around oyster reefs. We evaluate multiple hypotheses linking MPB with oyster reefs, including oyster biodeposition, meiofaunal grazing, and abiotic factors, aiming to help predict effects of reef removal or proliferation. We quantify spatial patterns of an Atlantic mudflat community and its environment around two large Crassostrea reefs before experimentally sacrificing one reef via burning. MPB biomass was enriched surrounding living oyster reefs although infaunal biomass and individual sizes were low. Structural equation modelling best supported the hypothesis that crab predation intensity, which decayed with distance from the reefs, locally freed MPB from grazing. Our results suggest that Crassostrea reef expansion may enrich local MPB patches and redirect trophic energy flows away from mudflat infauna, with potential implications for the sustainability of local fisheries and bird conservation.


Assuntos
Braquiúros , Ostreidae , Animais , Ecossistema , Pesqueiros , Comportamento Predatório
6.
Sci Data ; 7(1): 6, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913312

RESUMO

The use of functional information in the form of species traits plays an important role in explaining biodiversity patterns and responses to environmental changes. Although relationships between species composition, their traits, and the environment have been extensively studied on a case-by-case basis, results are variable, and it remains unclear how generalizable these relationships are across ecosystems, taxa and spatial scales. To address this gap, we collated 80 datasets from trait-based studies into a global database for metaCommunity Ecology: Species, Traits, Environment and Space; "CESTES". Each dataset includes four matrices: species community abundances or presences/absences across multiple sites, species trait information, environmental variables and spatial coordinates of the sampling sites. The CESTES database is a live database: it will be maintained and expanded in the future as new datasets become available. By its harmonized structure, and the diversity of ecosystem types, taxonomic groups, and spatial scales it covers, the CESTES database provides an important opportunity for synthetic trait-based research in community ecology.


Assuntos
Biota , Animais , Biodiversidade , Ecologia , Plantas
7.
Curr Biol ; 28(22): 3654-3660.e3, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30416056

RESUMO

Sustainably managing natural resources under climate change requires understanding how species distribution shifts can impact ecosystem structure and functioning. While numerous studies have documented changes in species' distributions and abundances in response to warming [1, 2], the consequences for the functional structure of ecosystems (i.e., composition of species' functional traits) have received less attention. Here, using thirty years of fish monitoring, we show that two connected North Atlantic ecosystems (E. English Channel and S. North Sea) underwent a rapid shift in functional structure triggered by a climate oscillation to a prevailing warm-phase in the late-1990s. Using time-lag-based causality analyses, we found that rapid warming drove pelagic fishes with r-selected life history traits (e.g., low age and size at maturity, small offspring, low trophic level) to shift abruptly northward from one ecosystem to the other, causing an inversion in functional structure between the two connected ecosystems. While we observed only a one-year time-lag between the climate oscillation and the functional shift, indicating rapid responses to a changing environment, historical overfishing likely rendered these ecosystems susceptible to climatic stress [3], and declining fishing in the North Sea may have exacerbated the shift. This shift likely had major consequences for ecosystem functioning due to potential changes in biomass turnover, nutrient cycling, and benthic-pelagic coupling [4-6]. Under ongoing warming, climate oscillations and extreme warming events may increase in frequency and severity [7, 8], which could trigger functional shifts with profound consequences for ecosystem functioning and services.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Peixes/fisiologia , Distribuição Animal , Animais , Ecossistema , Dinâmica Populacional , Temperatura
8.
PLoS One ; 13(11): e0207538, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30462744

RESUMO

Spatial indicators are used to quantify the state of species and ecosystem status, that is the impacts of climate and anthropogenic changes, as well as to comprehend species ecology. These metrics are thus, determinant to the stakeholder's decisions on the conservation measures to be implemented. A detailed review of the literature (55 papers) showed that 18 spatial indicators were commonly used in marine ecology. Those indicators were than characterized and studied in detail, based on its application to empirical data (a time series of 35 marine species spatial distributions, sampled either with a random stratified survey or a regular transects surveys). The results suggest that the indicators can be grouped into three classes, that summarize the way the individuals occupy space: occupancy (the area occupied by a species), aggregation (spreading or concentration of species biomass) and quantity dependent (indicators correlated with biomass), whether these are spatially explicit (include the geographic coordinates, e.g. center of gravity) or not. Indicator's temporal variability was lower than between species variability and no clear effect was observed in relation to sampling design. Species were then classified accordingly to their indicators. One indicator was selected from each of the three categories of indicators, to represent the main axes of species spatial behavior and to interpret them in terms of occupancy-aggregation-quantity relationships. All species considered were then classified according to their relationships among those three axes, into species that under increasing abundancy, primarily increase occupancy or aggregation or both. We suggest to use these relationships along the three-axes as surveillance diagrams to follow the yearly evolution of species distributional patterns in the future.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biologia Marinha , Animais , Biomassa , Clima , Previsões , Humanos , Densidade Demográfica
9.
Ecol Evol ; 7(15): 5542-5559, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28811874

RESUMO

Through their tissues or activities, engineer species create, modify, or maintain habitats and alter the distribution and abundance of many plants and animals. This study investigates key ecological functions performed by an engineer species that colonizes coastal ecosystems. The gregarious tubiculous amphipod Haploops nirae is used as a biological model. According to previous studies, the habitat engineered by H. nirae (i.e., Haploops habitat) could provide food and natural shelter for several benthic species such as benthic diatoms belonging to the gender Navicula, the micrograzer Geitodoris planata, or the bivalve Polititapes virgineus. Using data from scientific surveys conducted in two bays, this study explored whether (1) the Haploops sandy-mud community modifies invertebrate and ichthyologic community structure (diversity and biomass); (2) H. nirae creates a preferential feeding ground; and (3) this habitat serves as a refuge for juvenile fish. Available Benthic Energy Coefficients, coupled with more traditional diversity indices, indicated higher energy available in Haploops habitat than in two nearby habitats (i.e., Sternaspis scutata and Amphiura filiformis/Owenia fusiformis habitats). The use of isotopic functional indices (IFIs) indicated (1) a higher functional richness in the Haploops habitat, related to greater diversity in food sources and longer food chains; and (2) a higher functional divergence, associated with greater consumption of a secondary food source. At the invertebrate-prey level, IFIs indicated little specialization and little trophic redundancy in the engineered habitat, as expected for homogenous habitats. Our results partly support empirical knowledge about engineered versus nonengineered habitats and also add new perspectives on habitat use by fish and invertebrate species. Our analyses validated the refuge-area hypothesis for a few fish species. Although unique benthic prey assemblages are associated with Haploops habitat, the hypothesis that it is a preferential feeding area was not verified. However, specialist feeding behavior was observed for predators, which calls for further investigation.

10.
J Anim Ecol ; 83(5): 1137-48, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24645977

RESUMO

Understanding 'Why a prey is a prey for a given predator?' can be facilitated through trait-based approaches that identify linkages between prey and predator morphological and ecological characteristics and highlight key functions involved in prey selection. Enhanced understanding of the functional relationships between predators and their prey is now essential to go beyond the traditional taxonomic framework of dietary studies and to improve our knowledge of ecosystem functioning for wildlife conservation and management. We test the relevance of a three-matrix approach in foraging ecology among a marine mammal community in the northeast Atlantic to identify the key functional traits shaping prey selection processes regardless of the taxonomy of both the predators and prey. Our study reveals that prey found in the diet of marine mammals possess functional traits which are directly and significantly linked to predator characteristics, allowing the establishment of a functional typology of marine mammal-prey relationships. We found prey selection of marine mammals was primarily shaped by physiological and morphological traits of both predators and prey, confirming that energetic costs of foraging strategies and muscular performance are major drivers of prey selection in marine mammals. We demonstrate that trait-based approaches can provide a new definition of the resource needs of predators. This framework can be used to anticipate bottom-up effects on marine predator population dynamics and to identify predators which are sensitive to the loss of key prey functional traits when prey availability is reduced.


Assuntos
Cetáceos/fisiologia , Dieta/veterinária , Ecossistema , Comportamento Predatório , Animais , Oceano Atlântico , Tamanho Corporal , Cefalópodes/anatomia & histologia , Cefalópodes/fisiologia , Cetáceos/anatomia & histologia , Crustáceos/anatomia & histologia , Crustáceos/fisiologia , Peixes/anatomia & histologia , Peixes/fisiologia , Cadeia Alimentar , Dinâmica Populacional
11.
PLoS One ; 8(12): e84198, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391910

RESUMO

Recently revisited, the concept of niche ecology has lead to the formalisation of functional and trophic niches using stable isotope ratios. Isotopic diversity indices (IDI) derived from a set of measures assessing the dispersion/distribution of points in the δ-space were recently suggested and increasingly used in the literature. However, three main critics emerge from the use of these IDI: 1) they fail to account for the isotopic sources overlap, 2) some indices are highly sensitive to the number of species and/or the presence of rare species, and 3) the lack of standardization prevents any spatial and temporal comparisons. Using simulations we investigated the ability of six commonly used IDI to discriminate among different trophic food web structures, with a focus on the first two critics. We tested the sensitivity of the IDI to five food web structures along a gradient of sources overlap, varying from two distinct food chains with differentiated sources to two superimposed food chains sharing two sources. For each of the food web structure we varied the number of species (from 10 to 100 species) and the type of species feeding behaviour (i.e. random or selective feeding). Values of IDI were generally larger in food webs with distinct basal sources and tended to decrease as the superimposition of the food chains increased. This was more pronounced when species displayed food preferences in comparison to food webs where species fed randomly on any prey. The number of species composing the food web also had strong effects on the metrics, including those that were supposedly less sensitive to small sample size. In all cases, computing IDI on food webs with low numbers of species always increases the uncertainty of the metrics. A threshold of ~20 species was detected above which several metrics can be safely used.


Assuntos
Isótopos de Carbono/análise , Ecologia/métodos , Cadeia Alimentar , Modelos Biológicos , Isótopos de Nitrogênio/análise , Simulação por Computador , Comportamento Alimentar/fisiologia , Especificidade da Espécie
12.
PLoS One ; 7(11): e50096, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185542

RESUMO

Understanding the mechanisms that drive prey selection is a major challenge in foraging ecology. Most studies of foraging strategies have focused on behavioural costs, and have generally failed to recognize that differences in the quality of prey may be as important to predators as the costs of acquisition. Here, we tested whether there is a relationship between the quality of diets (kJ · g(-1)) consumed by cetaceans in the North Atlantic and their metabolic costs of living as estimated by indicators of muscle performance (mitochondrial density, n = 60, and lipid content, n = 37). We found that the cost of living of 11 cetacean species is tightly coupled with the quality of prey they consume. This relationship between diet quality and cost of living appears to be independent of phylogeny and body size, and runs counter to predictions that stem from the well-known scaling relationships between mass and metabolic rates. Our finding suggests that the quality of prey rather than the sheer quantity of food is a major determinant of foraging strategies employed by predators to meet their specific energy requirements. This predator-specific dependence on food quality appears to reflect the evolution of ecological strategies at a species level, and has implications for risk assessment associated with the consequences of changing the quality and quantities of prey available to top predators in marine ecosystems.


Assuntos
Dieta , Golfinhos/fisiologia , Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Toninhas/fisiologia , Comportamento Predatório/fisiologia , Baleias/fisiologia , Animais , Evolução Biológica , Tamanho Corporal , Ingestão de Alimentos , Cadeia Alimentar , Filogenia , Especificidade da Espécie
13.
Ecol Appl ; 21(2): 363-77, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21563569

RESUMO

Understanding the relationships between species biological traits and the environment is crucial to predicting the effect of habitat perturbations on fish communities. It is also an essential step in the assessment of the functional diversity. Using two complementary three-matrix approaches (fourth-corner and RLQ analyses), we tested the hypothesis that feeding-oriented traits determine the spatial distributions of littoral fish species by assessing the relationship between fish spatial distributions, fish species traits, and habitat characteristics in two Laurentian Shield lakes. Significant associations between the feeding-oriented traits and the environmental characteristics suggested that fish communities in small lakes (displaying low species richness) can be spatially structured. Three groups of traits, mainly categorized by the species spatial and temporal feeding activity, were identified. The water column may be divided in two sections, each of them corresponding to a group of traits related to the vertical distribution of the prey coupled with the position of the mouth. Lake areas of low structural complexity were inhabited by functional assemblages dominated by surface feeders while structurally more complex areas were occupied by mid-water and benthic feeders. A third group referring to the time of feeding activity was observed. Our work could serve as a guideline study to evaluate species traits x environment associations at multiple spatial scales. Our results indicate that three-matrix statistical approaches are powerful tools that can be used to study such relationships. These recent statistical approaches open up new research directions such as the study of spatially based biological functions in lakes. They also provide new analytical tools for determining, for example, the potential size of freshwater protected areas.


Assuntos
Ecossistema , Comportamento Alimentar/fisiologia , Peixes/fisiologia , Modelos Biológicos , Animais , Demografia , Água Doce , Quebeque , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...